Markdown to PDF Conversion
Using AH Formatter

May 2019
FLX Style

Table of Contents

PrEfaCE e e e iii
Generating PDF documents from Markdown using CSS formatting 1
CONVEISION PrOCESS .« vttt ettt ettt e et e et ettt e e e e et et eaae e iianeeeeans 1
Generatinga PDF from Markdown e e 2
Operating Environment i 2

SO U c ettt e e 2
Introducing Markdown Preview Github Stylingo oL 3
Complextabledescriptionoo ittt 4

BUIlAINg PDF . oot e e 5
Markdown manuscript to Tableof Contents ... 5
build-en:doc-1 Combining Markdownfiles.............. ..., 5
build-en:doc-2 Generatinga Table of Contents with DocToc................. 5
Markdown tO HTIMLt e e e et 6
build-en:doc-3 Conversion with “markdown-it” 6

build-en:doc-4 Adding content notincluded in the Markdown manuscript.... 6

build-en:doc-5 Embedding files using “html-inline” 7

I o N o I AP P 8
build-en:doc-6 Convertusing “AHFCmd” 8
Appendix: Sourcefiledetailsottt e e 9
Source files structUreo 9
PACKAZE. SOM .« . ettt et et e 10
SCHIPES/MAIT S . oo 11

el 0] 157 =] 1 PP 12

Preface

This document is a case study for anyone with the following objectives:

+ To create reports accompanying software development in Visual Studio Code
+ To write a document in Markdown and submit it as PDF

+ To make PDF build complete with command line operation only

+ To style like Markdown display on GitHub

+ To add a cover, table of contents, and page numbers in PDF

+ To automatically generate item titles, page numbers, and links within documents in the
table of contents

+ To put page numbers only on the text pages, excluding the cover and the table of contents

+ To notinclude extra properties in PDF

| will introduce the work flow | used to obtain a PDF that meets all the above requirements. (If
some of the above requirements are not needed, there may also be different work flows.)

The content covered here is the work flow used to implement it in my environment without
spending much time, and may not be the best practice. There is also a point of lack of
versatility, but it would be fortunate if it would be a test bed for sharing better implementation
methods.

| would like to express my gratitude to Mr. Keiichiro Shikano who reviewed this article before
publication. Thank you very much.

Generating PDF documents from Markdown
using CSS formatting

In this article, | will introduce the work flow for converting a Markdown-style manuscript into a
PDF document with a cover, table of contents, page numbers, etc.

The well-known methods for converting Markdown to PDF include using the rendering function
of a browser and generating PDF through LaTeX using Pandoc. However, the browser may have
limited typesetting capabilities and may require operations with a graphical user interface, and
Pandoc requires TeX knowledge for adjusting the appearance. In this paper, | introduce a
method to obtain PDF using CSS formatting using AH CSS Formatter. This method has the
following features:

+ The formatter may do processing such as putting page numbers except on the cover and
the table of contents

« Completely command line operation, making it easy to build repeatedly

+ You can adjust the look of the PDF without knowing TeX

Conversion process

First, convert the Markdown manuscript into HTML then perform CSS formatting with AH CSS
Formatter. Specifically, the following pre-processing is performed:

« Combine multiple Markdown files (preface, body, appendix, etc.)

Generate the table of contents from the header elements of the combined Markdown files.

Convert Markdown files that contain table of contents to HTML file.

Add metadata etc. to HTML file.

Embed images etc. within HTML file.

For those operations against Markdown and HTML, useful JavaScript tools are available as
Node.js package. So, this time, the whole process including CSS formatting by AH CSS
Formatter can be executed by npm, which is a package management tool for Node.js.

Later on, | will introduce this document itself as an example of the procedure for sequentially
executing the above preprocessing and CSS formatting and building a Markdown manuscript

into PDF using npm task execution function. | will then briefly explain each step of the build
process.

Generating a PDF from Markdown

You can download the complete set of source files “md2pdf”1) that were used to create this
document and try building a Markdown manuscript into a PDF.

Operating Environment
The work flow introduced here requires the following environment:

+ Node.js 10+
o AH CSS Formatter V6.6 MR5+

Also, although it is not required, it may be useful to have Visual Studio Code (VS Code) as an
editing environment. Later on, | will explain how to set up editing and previewing your

Markdown original in VS Code, and | will also show you how to make it possible to build the PDF

from a single window.

Setup

Once you have downloaded the complete set of source files, unzip them in an appropriate
location.

Next, if you are using VS Code, select “Open Folder” from the “File” menu of VS Code, and open
the extracted folder then select “New Terminal” from the “Terminal” menu. If you are not using
VS Code, open a terminal (such as Command Prompt in Windows) and move to the extracted
folder.

When ready, execute the following command from the terminal. The Node.js packages required

for the Markdown to PDF build process will be installed.

npm install

1) https://github.com/2SC1815J/md2pdf

https://github.com/2SC1815J/md2pdf

File Edit Selection View Go Debug Terminal Help md2pdf - Visual Studio Code

@ B

4 OPEN EDITORS

p 4 MD2PDF
b css

.eslintrcjson

[.] gitignore
Jjshintrc
f LICENSE
{} packagejson
README.md

b dist

b doc

b

b

b scripts
) .

bW

DUTPUT TERMINAL OO 1: cmd

Microsoft Windows [Version 6.1.7681]
Copyright (c) 2889 Microsoft Corporation. All rights reserved.

E: \md2pdf>npm installl

VS Code’s terminal (lower right)

Introducing Markdown Preview Github Styling

If you write a Markdown script in VS Code, install the VS Code extension “Markdown Preview

Github Styling”2) to preview Markdown with GitHub-style styling, which makes it easier to view
conversion results.

2) https://marketplace.visualstudio.com/itemdetails?itemName=bierner.markdown-preview-github-styles

https://marketplace.visualstudio.com/itemdetails?itemName=bierner.markdown-preview-github-styles
https://marketplace.visualstudio.com/itemdetails?itemName=bierner.markdown-preview-github-styles

CH

T

Selection View Go Debug Terminal Help

main-en.md X

In this article, I will introduce the flow for

verting a Markdown-style manuscript into a PDF
document with a cov table of contents, page
numbers, etc.

The well-known methods for converting Markdown to
PDF include using the rendering function of a
browser and generating PDF through LaTeX using
Pandoc. How the br
sufficient typesetting capabilities and may require

er may not

operations with a graphical user interface, and
Pandoc requires TeX knowledge for adjusting the
appearance. In this paper, I introduce a method to
obtain PDF using CSS formatting using AH CSS
Formatter. This method has the following featur

Possible to do formatting processing such as
putting page numbers excluding the cover and the
table of contents

Complete with command line operation only, easy
to build repeatedly

You can adjust the look of the PDF without
knowing TeX

First, vert the Markdown manuscript into HTML
then form CSS formatting » S Formatter.
Specifically, the following pre-processing is
performed:

Combine multiple Markdown files (preface, body,
appendix, etc.)

Generate the tahle of contents from the header

main-en.md - md2pdf - Visual Studio Code - O

Generating PDF
documents from

Markdown using CSS
formatting

In this article, I will introduce the flow for
converting a Markdown-style manuscript into a
PDF document with a cover, table of contents,
page numbers, etc.

The well-known methods for converting
Markdown to PDF include using the rendering
function of a browser and generating PDF
through LaTeX using Pandoc. However, the
browser may not have sufficient typesetting
capabilities and may require operations with a
graphical user interface, and Pandoc requires
TeX knowledge for adjusting the appearance. In
this paper, [introduce a method to obtain PDF
using CSS formatting using AH CSS Formatter.
This method has the following features:

» Possible to do formatting processing such
as putting page numbers excluding the

Preview display with “Markdown Preview Github Styling”

Complex table description

Some parts that cannot be expressed in Markdown are written directly in HTML within the

Markdown, as shown in Table 1. (Of course, they will be rendered as tables in the generated
PDF, not as HTML).

Table 1

Header1
Header 2-1

Header 2

Header 2-2

Prior to AH Formatter V6.6 MR5, the background color of merged cells may not be set

correctly.3)

Building PDF

Generate HTML and PDF from the Markdown manuscript in the doc folder by executing the

following command from the terminal, with output in the dist folder.?)
npm run build-en

The build process executes the steps from build-en:doc-1 to build-en:doc-6 described
inthe scripts property of the package.json file. Later on, | will show you the process of
converting Markdown documents to PDF in with each of these steps.

Markdown manuscript to Table of Contents

build-en:doc-1 Combining Markdown files

Combines the Table of Contents template (doc/toc-en.md) with multiple Markdown
manuscripts (doc/preface-en.md , doc/main-en.md , doc/appendix-en.md)into asingle
Markdown file.

npx minicat doc/toc-en.md doc/preface-en.md doc/main-en.md doc/appendix-
en.md > work/all-en.md

This step generates a temporary Markdown file (work/all-en.md).

build-en:doc-2 Generating a Table of Contents with DocToc

Generates a Table of Contents using the “DocToc”® Node.js package. The heading elements
contained in the Markdown are extracted, and the Table of Contents is created automatically.

3) Up to AH Formatter V6.6 MR4, this problem is dealt with by specifying the class explicitly.

4) If you are using VS Code, enabling VS Code’s npm.enableScriptExplorer setting will allow you to execute a
build with a mouse click instead of having to enter a command.

5) https://github.com/thlorenz/doctoc

https://github.com/thlorenz/doctoc

npx doctoc --notitle --maxlevel 3 work/all-en.md

This step updates the Table of Contents in the temporary Markdown file (work/all-en.md).

Markdown to HTML

build-en:doc-3 Conversion with “markdown-it”

Converts Markdown to HTML using the “markdown-it”®) Node.js package.7)
node scripts/mdit.js work/all-en.md work/all-en_md.html

This step generates a partial HTML file (work/all-en_md.html).

build-en:doc-4 Adding content not included in the Markdown
manuscript

The HTML that “markdown-it” generates does not include <html> , <head> , <body> , links
to CSSfiles, etc. Prepare a template HTML file (doc/template-en.html) that describes these
separately. The contents of the cover are also described there.

This step includes the HTML generated by “markdown-it” into the template.
node scripts/ejs.js doc/template-en.html work/all-en.html

In AH Formatter V6.6, when the PDF converted from this HTML is opened in the viewer, the
whole pages can be zoomed to fit in the window by including the following description in the
meta tag of the HTML file.

<meta name="openaction" content="#view=fit">

6) https://github.com/markdown-it/markdown-it

7) Prior to AH Formatter V6.6 MR5, there was a problem that the page number display after CSS formatting did not
work correctly if the Markdown heading element contains Japanese, and the URI-encoded Japanese character
string is set in the href of the Table of Contents part.

https://github.com/markdown-it/markdown-it

Also, from AH Formatter V6.6 MR5, it is possible to specify the creation date (/CreationDate) and
modification date (/ModDate) contained in the document information of the generated PDF by

including the following description:®)

<meta name="'creationdate" content="20190501TO90000+09">
<meta name="modifydate" content="20190501T090000+09">

The CSS file “github—markdown—css”9) is available to achieve styling like Markdown display on
GitHub. (css/github-markdown.css)

Write a CSS file (css/custom.css or css/custom-en.css) for CSS formatting that is ready

from the template HTML file, referring to “Introduction to CSS for Paged Media”19),
This step generates a temporary HTML file (work/all-en.html).

If you want to adjust the CSS file for CSS formatting, it is better to read this HTML file with the
AH Formatter graphical user interface and check the formatting result.

build-en:doc-5 Embedding files using “html-inline”

Embed CSS files and image files referenced from HTML files into HTML files using the “html-

inline”!) Node.js package.1?)
npx html-inline work/all-en.html -b doc -o dist/all-en.html

This step generates an HTML file (dist/all-en.html) that contains all the necessary
information.

8) Prior to AH Formatter V6.6 MR5, there is a method to set using “Coherent PDF Command Line Tools (cpdf)”.

9) https://github.com/sindresorhus/github-markdown-css

0) https://www.antennahouse.com/antennal/wp-content/uploads/2019/02/CSS-Print-en-2019-02-15.pdf

1) https://github.com/substack/html-inline

2) Prior to AH Formatter V6.6 MR6, the location of the source HTML file is displayed in the property "Base URL" of
the generated PDF. In order to empty the display, it was necessary to inline external files referenced from the
HTML file and specify command line parameters (-base " ") when outputting PDF. Starting with AH
Formatter V6.6 MR®, this step is no longer required.

1
1
1

https://community.coherentpdf.com/
https://github.com/sindresorhus/github-markdown-css
https://www.antennahouse.com/antenna1/wp-content/uploads/2019/02/CSS-Print-en-2019-02-15.pdf
https://github.com/substack/html-inline
https://github.com/substack/html-inline

HTML to PDF

build-en:doc-6 Convert using “AHFCmd”

Using “AHFCmd”, the AH Formatter command line interface, an HTML file containing all the
necessary information is styled using CSS and output as a PDF file.

AHFCmd -d dist/all-en.html -p @PDF -pdfver 1.5 -base " " -x 4 -pgbar -o
dist/all-en.pdf

This step generates the final PDF file (dist/all-en.pdf).

Appendix: Source file details

Here is the file structure of the set of source files used to create this document, and the contents
of the main files.

Source files structure

md2pdf
package.json

— Css
custom.css
custom-en.css
github-markdown.css

— dist
all-en.html
all-en.pdf

— doc

appendix-en.md
figbOl-en.png
fig@02-en.png
main-en.md
preface-en.md
template-en.html
toc-en.md

— node_modules

— scripts
ejs.js
mdit.js

— work

package.json

{
"name": "md2pdf",
"version": "1.0.0",
"description": "Convert Markdown documents to PDF",
"scripts": {
"build:doc-1": "npx minicat doc/preface.md doc/toc.md doc/main.md

doc/appendix.md > work/all.md",

"build:doc-2": "npx doctoc --notitle --maxlevel 3 work/all.md",

"build:doc-3": "node scripts/mdit.js work/all.md work/all_md.html",

"build:doc-4": "node scripts/ejs.js doc/template.html work/all.html",

"build:doc-5": "npx html-inline work/all.html -b doc -o dist/
all.html",

"build:doc-6": "AHFCmd -d dist/all.html -p @PDF -pdfver 1.5 -base \"
\" -x 4 -pgbar -o dist/all.pdf",

"build": "npm run build:doc-1 && npm run build:doc-2 && npm run
build:doc-3 && npm run build:doc-4 && npm run build:doc-5 && npm run
build:doc-6",

"build-en": "npm run build-en:doc-1 && npm run build-en:doc-2 && npm
run build-en:doc-3 && npm run build-en:doc-4 && npm run build-en:doc-5
&& npm run build-en:doc-6",

"build-en:doc-1": "npx minicat doc/toc-en.md doc/preface-en.md doc/
main-en.md doc/appendix-en.md > work/all-en.md",

"build-en:doc-2": "npx doctoc --notitle --maxlevel 3 work/all-en.md",

"build-en:doc-3": '"node scripts/mdit.js work/all-en.md work/all-
en_md.html",

"build-en:doc-4": "node scripts/ejs.js doc/template-en.html work/all-
en.html",

"build-en:doc-5": "npx html-inline work/all-en.html -b doc -o dist/
all-en.html",

"build-en:doc-6": "AHFCmd -d dist/all-en.html -p @PDF -pdfver 1.5 -
base \" \" -x 4 -pgbar -o dist/all-en.pdf"

b
"keywords": [
"Markdown",
IIPDFII
1,
"author": "2SC18153",
"license": "MIT",

"devDependencies": {
"anchor-markdown-header": "20.5.7",
"doctoc": "M1.4.0",

10

"ejs": "A2.6.1",
"eslint": "A5.16.0",
"html-inline": "71.2.0",
"htmltidy2": "20.3.0",
"markdown-it": "7A8.4.2",

"markdown-it-implicit-figures": "70.9.0",
"markdown-it-named-headers": "0.0.4",
"minicat": ""1.0.0"
}
}
scripts/mdit.js

/*

* md2html

* Copyright 2019 2SC1815J, MIT license

*/

'use strict';

if (process.argv.length < 4) {
console.error('Usage: node mdit.js input.md output.html');
process.exit(1l);

const header_instances = {};
const anchor = require('anchor-markdown-header');
const mdit = require('markdown-it"') (
{
html: true
1)
.use(require('markdown-it-named-headers'), {
slugify: function(header) {

if (header_instances[header] !== void 0) {
header_instances[header]++;
} else {

header_instances[header] = 0;

}

const match = anchor (header, 'github.com',
header_instances[header]).match(/J\(#(.+?)\)$/);
return match ? decodeURI(match[1]) : header;

1)

.use(require('markdown-it-implicit-figures'), {

11

figcaption: true

1)

const { promisify } = require('util');
const fs = require('fs');

(async () => {
const md = await promisify(fs.readFile) (process.argv[2], 'utf8');
const html = mdit.render(md);
await promisify(fs.writeFile) (process.argv[3], html, 'utf8');

HO
.then(() => {

console.log('Done.");
1)
.catch((err) => {
console.error(err);
process.exit(l);

1;
scripts/ejs.js

/*

* md2html

* Copyright 2019 2SC1815J, MIT license

*/

'use strict';

if (process.argv.length < 4) {
console.error('Usage: node ejs.js template.html output.html');
process.exit(1l);

const { promisify } = require('util');
const ejs = require('ejs');

const tidy = require('htmltidy2');
const fs = require('fs');

(async () => {
const text = await promisify(ejs.renderFile) (process.argv[2]);
const options = {
doctype: 'html5',
indent: 'auto',
wrap: O,

12

tidyMark: false,
quoteAmpersand: false,
hideComments: true,
dropEmptyElements: false,
newline: 'LF'
b3
const tidied = await promisify(tidy.tidy) (text, options);
await promisify(fs.writeFile) (process.argv[3], tidied, 'utf8');
HO
.then(() => {
console.log('Done.");
1)
.catch((err) => {
console.error(err);
process.exit(l);

1)

13

Markdown to PDF Conversion Using AH Formatter
May 1,2019

Translated by Antenna House, Inc.

Copyright © 2019 Jun HOMMA (@2SC1815J)

	Preface
	Generating PDF documents from Markdown using CSS formatting
	Conversion process
	Generating a PDF from Markdown
	Operating Environment
	Set up
	Introducing Markdown Preview Github Styling
	Complex table description
	Building PDF

	Markdown manuscript to Table of Contents
	build-en:doc-1 Combining Markdown files
	build-en:doc-2 Generating a Table of Contents with DocToc

	Markdown to HTML
	build-en:doc-3 Conversion with “markdown-it”
	build-en:doc-4 Adding content not included in the Markdown manuscript
	build-en:doc-5 Embedding files using “html-inline”

	HTML to PDF
	build-en:doc-6 Convert using “AHFCmd”

	Appendix: Source file details
	Source files structure
	package.json
	scripts/mdit.js
	scripts/ejs.js

